Calabi–Yau threefolds in $${\mathbb {P}}^6$$ P 6
نویسندگان
چکیده
منابع مشابه
One Cyclic Codes over $\mathbb{F}_{p^k} + v\mathbb{F}_{p^k} + v^2\mathbb{F}_{p^k} + ... + v^r\mathbb{F}_{p^k}$
In this paper, we investigate cyclic code over the ring Fpk + vFpk + v 2 Fpk + ...+ v r Fpk , where v = v, p a prime number, r > 1 and gcd(r, p) = 1, we prove as generalisation of [9] that these codes are principally generated, give generator polynomial and idempotent depending on idempotents over this ring as response to an open problem related in [11]. we also give a gray map and proprieties ...
متن کاملConstacyclic codes of length $p^sn$ over $\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}$
Let Fpm be a finite field of cardinality p m and R = Fpm[u]/〈u 〉 = Fpm +uFpm (u = 0), where p is a prime and m is a positive integer. For any λ ∈ Fpm, an explicit representation for all distinct λ-constacyclic codes over R of length pn is given by a canonical form decomposition for each code, where s and n are positive integers satisfying gcd(p, n) = 1. For any such code, using its canonical fo...
متن کامل$(1-2u^k)$-constacyclic codes over $\mathbb{F}_p+u\mathbb{F}_p+u^2\mathbb{F}_+u^{3}\mathbb{F}_{p}+\dots+u^{k}\mathbb{F}_{p}$
Let $\mathbb{F}_p$ be a finite field and $u$ be an indeterminate. This article studies $(1-2u^k)$-constacyclic codes over the ring $\mathcal{R}=\mathbb{F}_p+u\mathbb{F}_p+u^2\mathbb{F}_p+u^{3}\mathbb{F}_{p}+\cdots+u^{k}\mathbb{F}_{p}$ where $u^{k+1}=u$. We illustrate the generator polynomials and investigate the structural properties of these codes via decomposition theorem.
متن کاملCommutativity degree of $mathbb{Z}_p$≀$mathbb{Z}_{p^n}
For a nite group G the commutativity degree denote by d(G) and dend:$$d(G) =frac{|{(x; y)|x, yin G,xy = yx}|}{|G|^2}.$$ In [2] authors found commutativity degree for some groups,in this paper we nd commutativity degree for a class of groups that have high nilpontencies.
متن کاملSkew cyclic codes over $\mathbb{F}_{p}+u\mathbb{F}_{p}$
In this paper, we study skew cyclic codes with arbitrary length over the ring $R=\mathbb{F}_{p}+u\mathbb{F}_{p}$ where $p$ is an odd prime and $% u^{2}=0$. We characterize all skew cyclic codes of length $n$ as left $% R[x;\theta ]$-submodules of $R_{n}=R[x;\theta ]/\langle x^{n}-1\rangle $. We find all generator polynomials for these codes and describe their minimal spanning sets. Moreover, an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annali di Matematica Pura ed Applicata (1923 -)
سال: 2015
ISSN: 0373-3114,1618-1891
DOI: 10.1007/s10231-015-0476-0